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Abstract

We derive invariance relationships for a dynamic infinite-horizon model of
market microstructure with risk-neutral informed trading, noise trading, mar-
ket making, and endogenous production of information. Equilibrium prices
follow a martingale with endogenously derived stochastic volatility. The invari-
ance relationships for bet sizes and transaction costs are obtained under the
assumption that the effort required to generate one discrete bet does not vary
across securities and time. The invariance relationships for pricing accuracy
and market resiliency require the additional assumption that private informa-
tion has the same signal-to-noise ratio across markets. Since bets are based on
the arrival of discrete chunks of information, the structural model describes how
the invariance relationships reflect differences in the granularity of information
flows across markets. The model links proportionality coefficients in invariance
relationships to fundamental parameters.
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Kyle and Obizhaeva (2016) present market microstructure invariance as two em-
pirical hypotheses which explain a substantial fraction of the cross-sectional variation
in bet size (or meta-order size) and transaction costs across stocks. Here we develop
theoretical foundations for microstructure invariance by describing a theoretical model
of trading from which invariance relationships are derived endogenously. The struc-
ture of the model has the flavor of Treynor (1995) and Glosten and Milgrom (1985),
with underlying principles similar to the continuous-time model of Kyle (1985).

The model is based on the following assumptions. The unobserved fundamental
value of the stock follows geometric Brownian motion. Informed and noise traders
arrive randomly and trade only once. Each informed trader pays a fixed dollar cost
to obtain an informative private signal about the fundamental value. Each noise
trader obtains a “fake” signal which has the same unconditional distribution as an
informative signal but contains no information. Each noise trader believes himself
to be an informed trader. Both informed traders and noise traders trade optimally
on the perceived information content of their signals. Noise traders place bets at a
rate which leads to an exogenously given turnover rate of the float of shares. The
number of informed traders adjusts endogenously so that informed traders make zero
expected profits net of the cost of a signal and the price impact of trading on it.
Each informed or noise trader places one bet by announcing to competitive risk-
neutral market makers the quantity he wishes to trade. Conditional on this announced
quantity but not knowing whether the trader is informed or not, market makers set
a break-even price and hold the resulting inventory until the game is over.

Our main contribution is to derive market microstructure invariance hypotheses
as endogenously implied properties of this well-specified theoretical model. Accord-
ing to the invariance hypotheses, microstructure characteristics related to the size,
frequency, and market impact cost of bets become constants when scaled in units
of business time measured as the rate at which bets arrive into the market. Under
the key assumption that the expected dollar market impact cost of executing a bet
is constant across markets or across time, we show that the following two empirical
hypotheses conjectured by Kyle and Obizhaeva (2016) indeed hold in the equilibrium
of the theoretical model. First, the hypothesis of bet size invariance says that the
distribution of the dollar risk transferred by all bets is the same when the dollar risk
is measured in units of business time. Second, the hypothesis of transaction costs
invariance says that the expected dollar transaction cost of executing a bet is the
same function of the size of the bet when the bet’s size is measured as the dollar risk
it transfers in units of business time. Furthermore, under the additional assumption
of constant informativeness of the signals upon which bets are based, we also derive
additional invariance principles which we call pricing accuracy invariance and mar-
ket resiliency invariance. Pricing accuracy is invariant across markets if its reciprocal
(pricing error) is scaled by returns volatility per unit of business time, and market
resiliency is invariant if it is measured in units of business time.

The main theorem (see equations (37)) summarizes the scaling laws for bet size,
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number of bets, market depth, market liquidity, pricing accuracy, and market re-
siliency. These scaling laws connect market microstructure variables to trading vol-
ume and volatility using specific exponents of one-third and two-thirds.

The seemingly obscure invariance relationships are in fact the result of several
properties shared by many models of market microstructure (see equations (38)–
(41)). First, trading volume is defined as the sum of bets. Second, prices change
only as a result of the information content of the order flow, consistent with the Wall
Street adage “it takes volume to make prices move.” The model has linear price
impact which links return volatility to the information content of bets. Third, the
dollar cost of acquiring an informative signal, which in equilibrium equals the dollar
price impact cost of the bet, is the same for all assets and across time. This key
economic assumption is motivated by the intuition that asset managers allocate scarce
intellectual resources across markets and across time to maximize the profitability of
trading on private information. Fourth, there is a technical equation which relates
two moments of the bet size distribution. The general nature of these assumptions
suggests that invariance relationships are most likely not only features of a particular
equilibrium model in this paper but also universal properties of financial markets.

The intuition behind the exponents of one-third and two-thirds comes from a
simple observation. Both volume and returns variance are linear in the number of bets,
but volatility is linear in square root of the number of bets. Consider what happens
when trading volume increases, either as a result of a gradual time series increase in
market capitalization (holding turnover approximately constant) or as a result of a
cross-sectional comparison of a high-volume stock with a low-volume stock. Suppose
that returns volatility is remains constant and is equal to fundamental volatility.
When volume is higher, both the number of bets and the size of bets are larger.
When the number of bets increases, the market becomes more efficient; the distance
between prices and fundamentals shrinks, market depth increases, and traders must
execute larger bets to cover the exogenous fixed costs of generating each signal. Bet
sizes are inversely proportional to returns volatility per bet; therefore, as markets
become deeper, faster, and more efficient, bet size increases half as fast as the rate
as number of bets. This leads to one-to-two ratio between the size of bets and the
number of bets, implying scaling exponents of one-third and two-thirds.

The dynamic equilibrium of the model is interesting in itself. The equilibrium price
process is approximately a diffusion when bet size is small. Although fundamental
volatility is constant, return volatility is actually stochastic. When return volatility is
less than the volatility of fundamentals, trading is not incorporating information into
prices as fast as fundamental uncertainty is unfolding, the pricing error is widening,
the market is becoming less liquid and less efficient, and bets are becoming smaller and
more frequent. When return volatility is greater than the volatility of fundamentals,
trading is incorporating information into prices faster than fundamental uncertainty is
unfolding, the pricing error is shrinking, the market is becoming more liquid and more
efficient, and bets are becoming larger and less frequent. A conditional steady state
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is reached when returns volatility coincides with the volatility of fundamentals, and
thus the rate at which new fundamental volatility unfolds and the rate at which prices
incorporate private information are in balance. The endogenous returns volatility
increases in the size of the pricing error and the number of traders.

In the financial economics literature, there is a long tradition of empirical studies
which relate trading volume and the number of trades to return volatility. For exam-
ple, Clark (1973), Tauchen and Pitts (1983), Karpoff (1987), and Harris (1987) all
find find that volatility is closely related to trading. Andersen et al. (2015) investigate
a different volume-volatility relationship based on the hypothesis that trades in the
S&P E-mini futures contract are proportional to bets. The invariance hypothesis can
be reframed to predict that returns volatility per trade is inversely proportional to
average trade size; this prediction is supported by the futures trading data.

The model explicitly highlights difference between existing definitions of market
efficiency. The model assumes that the market is efficient in a sense that prices follow
a martingale, as discussed in Fama (1970) and LeRoy (1989). Black (1986) proposes
an alternative measure of market efficiency based on the size of pricing errors, defined
as the log-standard deviation of the ratio of price to fundamental value. The model
implies that the sizes of pricing errors are proportional to market resiliency, defined
as the speed with which prices recover after a random shock. Since market resiliency
may be easier to identify empirically than hard-to-observe pricing errors, this link
provides an indirect way to implement this alternative measure of market efficiency.

The rest of this paper presents the model, solves for the equilibrium price process,
derives invariance relationships, discusses the model’s intuition, and makes several
general observations about properties of the model.

1 A Dynamic Model of Trading

We next describe a dynamic model of sequential speculative trading. To make clear
the distinction between endogenous variables and exogenous parameters, we use nota-
tion which assumes that all exogenous parameters are constants, while all endogenous
variables are time-varying.

Fundamental Value and Prices. Let the unobserved fundamental value of the
asset follow a geometric Brownian motion given by

F (t) := exp[σF ·B(t)− 1
2
· σ2

F · t], (1)

where B(t) follows standardized Brownian motion with var{B(t+∆t)−B(t)} = ∆t,
the constant σF measures the “Black-Scholes volatility” of the fundamental value,
and the term 1

2
·σ2

F · t makes F (t) follow an exponential martingale. The fundamental
value F (t) is the value to which a stock price would converge if traders continuously
invested huge resources to acquire information about its value.
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Trading takes place over some long finite horizon, ending at a distant date at which
all traders receive a payoff equal to the fundamental value of the asset. Assume a
zero risk-free rate of interest.

The price changes as informed traders and noise traders arrive into the market
and anonymously place buy and sell bets. Risk-neutral competitive market makers
clear the market by taking the other side of bets. They set the market price P (t) as
the conditional expectation of the fundamental value F (t) given a history of the bet
flow, which turns out to be informationally equivalent to the history of prices.

Rather than focusing on the market makers’ estimate of the fundamental value
F (t), it is simpler to focus instead on their estimate of the Brownian motion B(t),
in terms of which F (t) is defined in equation (1). Let B̄(t) := Et{B(t)} denote the
market’s conditional expectation of B(t) based on observing the history of bets or
prices up to time t. For now, assume that the error B(t)− B̄(t) has approximately a
normal distribution with a mean of zero and a time-varying variance denoted Σ(t)/σ2

F .
Scaling the error variance by by σ2

F gives Σ(t)1/2 the interpretation as a percentage
error, consistent with the definition of pricing accuracy.

The price P (t) is the best estimate of fundamental value when it is given by

P (t) = Et{F (t)} = exp[σF · B̄(t) + 1
2
· Σ(t)− 1

2
· σ2

F · t]. (2)

Given Σ(t), this equation shows that P (t) and B̄(t) are informationally equivalent.1

It can be easily shown that the price has a martingale property.

Pricing Accuracy, Resiliency, and Market Efficiency. The definition of Σ(t)
implies

Σ(t) = vart{ln[F (t)/P (t)]}. (3)

Thus, Σ1/2, which measures the standard deviation of this log-difference, can be inter-
preted intuitively as a log percentage-error, and its reciprocal Σ−1/2 can be interpreted
as a measure of pricing accuracy.

Intuitively, the unobservable fundamental value F (t) evolves over time due to
continuous un-modeled changes in production processes, consumer tastes, costs of
materials, prices of outputs, competitor strategies, and other market conditions. The
observable price P (t) is the market’s best estimate of this fundamental value. If prices
are above fundamentals, then prices will tend to decrease over time towards funda-
mentals, as trading based on private information gradually incorporates information
about fundamental value into prices. If prices are below fundamentals, then informed
trading will tend to make prices increase over time in the direction of fundamentals.
On average, the more prices deviate from fundamental value, the less accurate they

1Note that if Σ(t) = 0, then equations (1) and (2) are the same; the term 1
2 ·Σ(t) is the convexity

adjustment exp() function implied by a normal distribution. The term 1
2 · σ2

F · t is an analogous
adjustment in both equation (1) and (2). This same adjustment shows up in the moment generating
function for a normal distribution.
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are. The variable Σ1/2(t) measures the average log-distance between fundamental val-
ues and prices, i.e. pricing error equal to the inverse of pricing accuracy. The pricing
error increases over time if innovations in the Brownian motion B(t) add variance
faster than it is reduced by the information inferred from informed trading.

Black (1986) uses a similar concept of pricing accuracy when he defines market
efficiency. He conjectures that “almost all markets are efficient” in the sense that
“price is within a factor 2 of value” at least 90% of the time. Since the probability that
a normal distribution is within 1.64 standard deviations of its mean is approximately
equal to 90%, Black’s conjecture holds using our notation if Σ1/2(t) < ln(2)/1.64 in
almost all markets. Black would say that the market has become more “efficient,” if
Σ1/2(t) becomes smaller, implying the average log-distance between observable prices
and unobservable fundamentals shrinks.

It is convenient to think about pricing accuracy in time units. Let the pricing error
variance Σ(t) be scaled by annual returns variance σ2(t). The quantity Σ(t)/σ2(t)
can be then interpreted as the number of years by which the informational content
of prices lags behind fundamental value based on current returns volatility. The less
accurate prices are (Σ(t) is large) and the lower is returns volatility (σ2 is small), the
more years it takes for market prices to catch up with fundamentals. For example,
suppose a stock’s annual volatility is about 35%, implying σ = 0.35, and suppose
Σ1/2 = ln(2)/1.64, as before. Then prices are about 1.50 years behind fundamental
value, since (ln(2)/1.64)2/0.352 ≈ 1.50. This means that, on average, it would take
about 1.50 years of 35% returns volatility for prices to converge to fundamental value
under the assumption that the fundamental value remained frozen in time. Of course,
fundamental value continues to change with variance σ2

F , implying Σ(t) ≈ 1.50 · σ2
F

after about 1.50 years. If σF < 0.35, then pricing accuracy would have improved after
about 1.50 years.

The concept of market resiliency is closely related to the concept of pricing ac-
curacy. They are two sides of the same coin. Let resiliency ρ be the mean-reversion
parameter (per calendar year) measuring the speed with which a random shock to
prices—resulting from execution of an uninformative bet—dies out over time as in-
formative bets drive prices back towards fundamental value. The half-life of an unin-
formative shock to prices is then equal to ρ−1 · ln(2). We will later show that market
resiliency is greater in markets with higher pricing accuracy.

Black’s definition of market efficiency, based on accuracy of prices, contrasts
sharply with the conventional definition associated with Eugene Fama. Fama con-
siders a market to be efficient if all available information is appropriately reflected
in price; this implies that prices adjusted for dividends and risk premium follow a
martingale, regardless of how much information is available overall in the market. In
an efficient market, the log-distance between prices and fundamentals Σ1/2 may be
either large or small. In our model, prices are by assumption efficient in the sense of
Fama, but pricing accuracy and resiliency vary endogenously over time.
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Informed Traders. There are informed traders, noise traders, and market mak-
ers. Informed traders arrive randomly into the market at endogenously determined
rate γI(t). Each informed trader pays a fixed cash amount for a private signal, con-
structs his estimate of the fundamental value, and trades on his estimate optimally
maximizing profits taking into account how his trading affects prices.

If an informed trader arrives at time t, he observes one private signal ĩ(t) and also
the history of prices, including the most recent price; he can thus infer the market’s
estimate B̄(t) and the scaled error variance Σ(t). An informed trader then places
one and only one bet. The bet quantity is announced to market makers, and the
market makers take the other side of the bet at a competitive price described below.
Informed signals are assumed to have the signal-plus-noise form

ĩ(t) := τ 1/2 · Σ(t)−1/2 · σF · [B(t)− B̄(t)] + Z̃I(t), (4)

where τ is an exogenous constant parameter measuring the precision of the signal
and the noise term Z̃I(t) ∼ N(0, 1) is distributed independently from the history
of prices prior to the arrival of the signal. The signal ĩ(t) is the weighted sum
of two random variables, Σ(t)−1/2 · σF · [B(t) − B̄(t)] and Z̃I(t), each of which is
(approximately) distributedN(0, 1). The weighting factor τ , which governs the weight
on the information-carrying component, measures the precision of the signal in units
“per time.” Thus, scaling τ 1/2 by the factor Σ(t)−1/2 · σF—the reciprocal of the
standard deviation of B(t) − B̄(t)—makes the parameter τ measure the signal-to-
noise ratio, which is assumed to be constant regardless of the level of B(t) − B̄(t)
and price dynamics. Without scaling, signals would be much more informative when
B(t)− B̄(t) is large and much less informative when B(t)− B̄(t) is small.

Since we consider a continuous-time model, we assume τ is small enough so that
var{̃i(t)} = 1 + τ ≈ 1. Although the signal associated with the nth bet to arrive is
different from previous signals, we omit a clarifying subscript n on ĩ(t).

An informed trader infers his prior estimate B̄(t) of B(t) from market prices.
Upon observing a signal ĩ(t), he then updates his prior from B̄(t) to B̄(t) + ∆B̄I(t).
Here the subscript I reminds that updating is performed given the information set
of an informed trader. The updating by the informed trader is different from the
updating by market makers (described below) because the informed trader assumes
that he himself is informed with probability one while market makers—not knowing
whether a trade is informed or uninformed—must incorporate into their updating the
possibility that a trade comes from a noise trader. Assuming τ is small, the informed
trader’s update is given by

∆B̄I(t) := E{B(t)− B̄(t)|̃i(t)} ≈ τ 1/2 · Σ(t)1/2 · σ−1
F · ĩ(t). (5)

This is the valuation update rule for each informed trader, who uses his private signal
ĩ(t) to adjust his prior estimate B̄(t). To prove this equation, we regress B(t)− B̄(t)
on signal ĩ(t) from equation (4), plug the variance of B(t) − B̄(t) equal to Σ(t)/σ2

F ,
and use the continuous-time approximation var{̃i(t)} ≈ 1.

6



For what follows, it is useful to calculate how dollar price would change, if the
signal value ∆B̄I(t) were to be fully incorporated into prices. We obtain

E{F (t)− P (t) |∆B̄I(t)} = P (t) · E{exp[σF · (B(t)− B̄(t))− 1
2
· Σ(t)]− 1 |∆B̄I(t)}

≈ P (t) ·
(
exp[σF · (∆B̄I(t)− 1

2
·∆B̄I(t)

2)]− 1
)

(6)

≈ P (t) · σF ·∆B̄I(t).

Here we use equations (1) and (2) for F (t) and P (t) in the first line, the continuous-
time approximation for conditional variance

var{σF · (B(t)− B̄(t)) |∆B̄I(t)} ≈ Σ(t)−∆B̄I(t)
2 (7)

in the second line, and a Taylor approximation in the third line.
Upon obtaining a private signal, an informed trader arriving at time t has to decide

on how to trade on it. We assume that an informed trader executes a bet of size Q̃(t).
In order to break even in the presence of adverse selection, market makers take the
other side of the bet at a price adjusted by λ(t) · Q̃(t), where λ(t) is a price impact
parameter. The price impact is linear in the size of the bet. Then, the expected
dollar costs of executing Q̃(t) shares is equal to

CB(Q̃(t)) = λ(t) · Q̃(t)2. (8)

Suppose that a bet of size Q̃(t) is a linear multiple of ∆B̄I(t) in such a way that
only a fraction θ of the “fully revealing” impact P (t) · σF ·∆B̄I(t) from equation (6)
is incorporated into prices, i.e.,

Q̃(t) = θ · λ(t)−1 · P (t) · σF ·∆B̄I(t). (9)

If the informed trader were to trade Q̃(t) shares defined in equation (9) at price P (t)
with no price impact costs, then his unconditional expected “paper trading” profits,
denoted π̄I(t), would be equal to

π̄I(t) := E{[F (t)− P (t)] · Q̃(t)} =
θ · P (t)2 · σ2

F · E{∆B̄I(t)
2}

λ(t)
. (10)

The expected profits of the informed trader [F (t) − P (t)] · Q̃(t) net of transactions
costs λ(t)·Q̃(t)2 conditioning on observing the signal ĩ(t), or equivalently on observing
∆B̄I(t), are equal to

E{[F (t)−P (t)]·Q̃(t)−λ(t)·Q̃(t)2 |∆B̄I(t)} =
θ · (1− θ) · P (t)2 · σ2

F ·∆B̄I(t)
2

λ(t)
. (11)

It is clear that
θ = 1/2 (12)
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maximizes the expected profits in equation (11) and therefore solves the optimization
problem of a risk-neutral monopolistic informed trader, who optimally incorporates
half of his information into prices.

In what follows, rather than assuming that informed traders are risk neutral and
therefore θ = 1/2 as the equilibrium choice of θ, we will instead allow θ to have an
arbitrary exogenous value such that 0 < θ < 1. This approach accommodates the
possibility that informed traders are risk averse, in which case θ < 1/2 might be
optimal; it also accommodates the possibility of information leakage, in which case
θ > 1/2 might be optimal. More importantly, it allows us to show that the invariance
results derived below depend only on the fact that θ is some constant, not that θ has
the specific value 1/2.

Noise Traders. Noise traders arrive randomly and place bets in the market at
an endogenously determined rate γU(t) such that a constant fraction η of the market
capitalization of the firm turns over, on average, per day. In the spirit of Black (1986),
each noise trader trades based on a “fake” signal which has the same unconditional
distribution as an informative signal but no information content.

More formally, if a noise trader arrives at time t, he receives a signal ĩ(t) which
is assumed to have the same unconditional distribution as an informative signal (4),
i.e.,

ĩ(t) = Z̃U(t), (13)

where Z̃U(t) ∼ N(0, 1 + τ) ≈ N(0, 1). This signal is “noise” in the sense that ĩ(t) is
distributed independently from the error B̄(t)−B(t) and the history of prices.

Let N denote the number of shares outstanding, let V (t) denote average share
volume per day from informed and noise traders combined, and let γ(t) := γI(t)+γU(t)
denote the combined arrival rate of bets by informed traders and noise traders. Both
informed trades and noise trades are distributed as the random variable Q̃(t) in
equation (9). Then, expected share volume from noise traders η · N and the total
volume V (t) satisfy

γU(t) · E{|Q̃(t)|} = η ·N, γ(t) · E{|Q̃(t)|} = V (t). (14)

As in market microstructure invariance, the expected arrival rate of bets γ(t) sets the
pace of business time in the model.

Market Makers (Intermediaries). Zero-profit, risk-neutral, competitive market
makers set prices such that the price impact of anonymous trades by either informed
or noise traders make the price P (t) equal to the conditional expectation of the
fundamental value F (t) given the history of all bets. Market makers use the linear
price-adjustment rule,

∆P (t) := E{F (t)− P (t) | Q̃(t)} ≈ λ(t) · Q̃(t). (15)
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If market makers could observe whether a bet was placed by an informed trader
or noise trader, they would multiply the price impact of informed bets λ(t) · Q̃(t)
by 1/θ (since informed bets reveal only fraction θ of their information content by
assumption) and they would multiply the price impact of noise bets λ(t) · Q̃(t) by
zero (since noise bets have no information content). The probability of an informed
bet is γU(t)/γ(t), and the probability of a noise bet is γU(t)/γ(t). In equilibrium, the
average impact of a bet must satisfy

∆P (t) = λ(t) · Q̃(t) =
γI(t)

γ(t)
· λ(t) · Q̃(t) · 1

θ
+

γU(t)

γ(t)
· λ(t) · Q̃(t) · 0. (16)

This equation has the interesting property that price impact λ(t) and Q̃(t) enters
both of its sides linearly. This implies that the market makers’ updating rule does
not define the market depth 1/λ(t) but instead imposes a restriction on the fraction
of informed traders and noise traders given by

γI(t)

γ(t)
= 1− γU(t)

γ(t)
= θ. (17)

The endogenously determined fraction of traders who are informed turns out to be
equal to the exogenous constant θ. Recall that in the special case when informed
traders are risk neutral, θ = 1/2 implies that the number of informed traders is
exactly equal to the number of noise traders. Thus, the fraction of informed trades is
not determined by equation (11) describing the profit optimization of informed traders
described but rather by equation (16) describing the adverse selection problem faced
by market makers. As discussed in section below, this property is not unique for
our model; for example, it can be also found in the derivation of the continuous-time
model of Kyle (1985).

Equations (14) and (17) further imply that, in terms of exogenous variables, share
volume V (t) constitutes a constant fraction of shares outstanding N ,

V (t) = η ·N/(1− θ). (18)

Break-Even Conditions for Market Makers and Informed Traders. We will
first derive the break-even condition for market makers. Equation (9) implies that
the unconditional expected price impact cost of an informed bet, denoted C̄B(t), is
given by

C̄B(t) := E{CB(Q̃(t))} = λ(t) · E{Q̃(t)2} =
θ2 · P (t)2 · σ2

F · E{∆B̄I(t)
2}

λ(t)
. (19)

Bets by noise traders have the same expected impact cost since they have the same
unconditional distribution as informed bets and are indistinguishable from informed
bets from the perspective of market makers. The equilibrium level of costs must allow
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market makers to break even. Thus, the expected dollar price impact costs C̄B(t) that
market makers expect to collect from all γI(t) + γU(t) traders must be equal to the
expected dollar paper trading profits π̄I(t) of γI informed traders:

(γI(t) + γU(t)) · C̄B(t) = γI · π̄I(t). (20)

Figure 1 illustrates the intuition informally. Informed traders incorporate only a
fraction θ of their information into prices by trading Q̃(t) and the price jumps by
θ ·E{F (t)−P (t) | Q̃(t)}; informed traders pay transactions costs C̄B(t) and expect to
make π̄I(t) − C̄B(t) as the price gradually converges to expected fundamental value
E{F (t) | Q̃(t)} over time due to the subsequent trading of other informed traders.
These profits are realized at some distant date when the game ends and positions are
liquidated at the expected fundamental value F (t). Noise traders execute orders which
incur transactions costs C̄B(t) but would earn nothing if there were no transactions
costs. As in Treynor (1995), the expected losses market makers incur trading with
informed traders γI(t) · (π̄I(t)− C̄B(t)) are equal to their expected gains trading with
noise traders γU(t) · C̄B(t). This is an alternative explanation for equation (20).

Figure 1: Intuition for the Model.
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There is price continuation after an informed trade and mean reversion
after a noise trade.

We next derive the break-even condition for informed traders. The break-even
condition for informed traders yields the rate at which informed traders place bets
γI(t). The expected paper trading profits from trading on a signal π̄I(t) must equal
the sum of expected transaction costs C̄B(t) and the exogenously constant cost of
acquiring private information denoted cI at the first place,

π̄I(t) = C̄B(t) + cI . (21)
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Liquidity Measure. Our main measure of liquidity is the expected percentage cost
of executing a bet (in basis points), defined as

1/L(t) :=
C̄B(t)

E{|P (t) · Q̃(t)|}
. (22)

It measures the dollar-volume-weighted expected percentage cost of executing a bet
and intuitively expresses the expected dollar transaction cost as a fraction of the
expected dollar value traded.

Diffusion Approximation. The model theoretically implies that the price follows
a jump process which changes when a bet arrives. Conditional expectations of B̄(t)
calculated based on a random number of bet arrivals during a given time interval are
not precisely linear in their size. Moreover, since the price is a nonlinear function of
B̄(t), price impact is theoretically nonlinear as well.

To deal with these non-linearities, we assume that the arrival rate of bets is so
fast—and the resulting price impact of each bet is so small—that a linear approxi-
mation based on a diffusion is appropriate. In the limit as the bet arrival rate γ(t)
goes to infinity, the conditional expectation B̄(t) becomes an exactly linear function
of the history of bets, and the price process becomes a diffusion. This is compatible
with assuming that market makers and traders use linear filtering, market makers
offer linear supply schedules to traders, traders place bets as linear functions of sig-
nals, log-price changes are normally distributed, and price changes are conditionally
normally distributed in the sense of an Euler approximation.

As a result of each bet, market makers update their estimate of B̄(t) by ∆B̄(t).
This update of market makers is not to be confused with the update ∆B̄I(t) of
informed traders, since they use different information set.

A trade is informed with probability θ; if informed, a trade incorporates a fraction
θ of its information content into prices and leads to an adjustment in market maker’s
estimate B̄(t) of

∆B̄(t) = θ · τ 1/2 · Σ(t)1/2 · σ−1
F ·

(
τ 1/2 · Σ(t)−1/2 · σF · [B(t)− B̄(t)] + Z̃I(t)

)
, (23)

obtained from the definition of informed traders’ signal ĩ(t) in equations (4) and
the filtering rule in equation (5). A trade is uninformed with probability 1 − θ; if
uninformed, a trade adds to market maker’s estimate B̄(t) noise of size

∆B̄(t) = θ · τ 1/2 · Σ(t)1/2 · σ−1
F · Z̃U(t), (24)

obtained from the definition of noise traders’ signal ĩ(t) in equations (13) and the
filtering rule in equation (5).

When the arrival rate of bets γ(t) per day is sufficiently large, the diffusion ap-
proximation for the dynamics of the estimate B̄(t) is described by a mixture of θ ·γ(t)
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adjustments of the form (23) and (1−θ)·γ(t) adjustments of the form (24). Combining
both of them, we write the dynamics of the estimate B̄(t),

dB̄(t) = γ(t) · θ2 · τ · [B(t)− B̄(t)] · dt+ γ(t)1/2 · θ · τ 1/2 · Σ(t)1/2 · σ−1
F · dZ(t). (25)

The first term corresponds to the information contained in informed signals which
arrive at a rate θ · γ(t). The second term corresponds to the noise contained in all—
informed and noise—bets arriving at a rate γ(t). Here, γ(t)1/2 · dZ(t) is obtained
by converting the mixture of dZI(t) and dZU(t)—with probabilities θ and 1 − θ,
respectively—into a Brownian motion dZ(t) with the same variance.

Conditional Steady State. The steady state of this model has interesting prop-
erties. In the equilibrium, as we show next, the log-price process is a martingale with
stochastic volatility.

Define σ(t) by
σ(t) := θ · τ 1/2 · Σ(t)1/2 · γ(t)1/2. (26)

By applying Ito’s lemma to the definition of price in equation (2) to get dP (t),
plugging equation (25) into dB̄(t)2, and using equation (26), we obtain

dP (t)

P (t)
= 1

2
· [Σ′(t)− σ2

F + σ(t)2] · dt+ σF · dB̄(t). (27)

The competition between market markets leads to market efficiency which implies
that P (t) must follow a martingale. The drift in equation (27) therefore must be
zero, implying that Σ(t) must satisfy the following differential equation

dΣ(t)

dt
= σ2

F − σ(t)2. (28)

Define dZ̄(t) := Σ(t)−1 · σ(t) · σF · [B(t) − B̄(t)] · dt + dZ(t). The process Z̄(t)
is a standardized Brownian motion under the market’s filtration, because B̄(t) is the
market’s best estimate of B(t) at time t. Equation (25) can then be written in the
simplified form

dB̄(t) = σ(t) · σ−1
F · dZ̄(t). (29)

Substituting dZ̄(t) for dB̄(t) in equation (27), we write the equilibrium price process
as the martingale

dP (t)

P (t)
= σ(t) · dZ̄(t). (30)

Thus, σ(t) indeed measures returns volatility, consistent with our notation σ through-
out this paper. Returns volatility σ(t) measures the rate at which new information
is being incorporated into prices. According to equation (26), returns volatility σ(t)
is stochastic, even though fundamental volatility σF is constant.
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Equations (28) and(30) have a simple intuition. When returns volatility σ(t)
is greater than fundamental volatility σF , new information is being incorporated
into prices faster than new fundamental uncertainty is unfolding, and the difference
σ2
F −σ2(t) represents the rate at which pricing error Σ(t) is decreasing. When returns

volatility σ(t) is smaller than fundamental volatility σF , new fundamental uncer-
tainty is unfolding faster than information is being incorporated into prices, and the
difference σ2

F − σ2(t) represents the rate at which pricing error Σ(t) is increasing.
When Σ′(t) = 0, we shall say that Σ(t) has reached a “conditional steady state”

in which the unfolding of new fundamental volatility and the incorporation of new
private information into prices are in balance, i.e., σ(t) = σF . We use this terminology
because the right-hand side of equation (28) does not converge to a constant. Indeed,
the value of γ(t), which follows a diffusion, is constantly changing and this makes σ(t)
change as well. If γ(t) were to remain constant for a long period of time, the value of
Σ(t) would converge to the conditional steady state given by

Σ(t) =
σ2
F

γ(t) · θ2 · τ
, (31)

obtained from the definition of σ(t) in equation (26) and equation (28) when Σ′(t) = 0.
As changes in prices P (t) lead to immediate changes in market capitalization and

therefore changes in the arrival rate of bets γ(t), the value of Σ(t) gradually drifts
towards a “conditional steady state” value. While it is the level of γ(t) that follows
a diffusion, it is the derivative of Σ(t) that follows a diffusion. Therefore, as γ(t)
changes, the value of Σ(t) moves smoothly towards a conditional steady-state value
which it is constantly chasing.

According to equation (31), more accurate signals and more frequent bets make
market prices more accurate. The invariance theorem discussed next applies both in
the conditional steady state and outside it.

The structural model also implies a particular relationship between pricing accu-
racy and resiliency. Recall that resiliency ρ(t) denote the mean reversion rate at which
pricing errors resulted from execution of uninformative bets disappear, as prices are
pushed back towards fundamentals whenever an informative bet is execute. Equa-
tions (25) and (26) imply that the difference B(t)− B̄(t) follows the mean-reverting
process 2

d[B(t)− B̄(t)] = −σ(t)2

Σ(t)
· [B(t)− B̄(t)] · dt+ dB(t)− σ(t)

σF

· dZ(t). (32)

2Black (1986) contains the intuition that because transitory noise affects prices, prices have twice
the returns variance as fundamental value, and this is associated with mean reversion in returns.
Equation (32) shows that, in a steady state, Black’s intuition applies to the log-ratio of prices to
fundamental value, not to prices themselves (equation (30)), which have a martingale property.
Black (1986) may have been confusing the properties of prices with the properties of the ratio of
fundamental value to price.
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Thus, we have

ρ(t) =
σ(t)2

Σ(t)
. (33)

Holding returns volatility constant, resiliency is greater in markets with higher pricing
accuracy.

This equation (33) suggests an empirical strategy for calibrating Black’s measure
of market efficiency, which is difficult to observe directly. A value for Σ can be inferred
indirectly from an estimate of resiliency ρ, which can be obtained by examining how
fast price effects from noise trades die out over time (or from examining how long
traders hold actively managed positions based on a more general model in which
positions are liquidated after some fraction of their information content is revealed
in prices). As discussed before, for example, if a stock’s annual volatility is about
35% and Σ1/2 = ln(2)/1.64, then prices are about 1.50 years “behind” fundamental
value, i.e., Σ/σ2 = (ln(2)/1.64)2/0.352 ≈ 1.50. The error B(t)− B̄(t) in equation (32)
mean-reverts to zero at rate ρ = σ2 ·Σ−1 = 0.352/(ln(2)/1.64)2 = 0.69 per year. This
implies that the half-life of the price impact of a noise trade is equal to ln(2)/ρ ≈ 1
year. Black (1986) could, therefore, have equivalently defined an efficient market as
one in which the half-life of the price impact of noise trades is less than one year.

The endogenous quantities in the model are all functions of the two “state vari-
ables” P (t) and Σ(t), which evolve stochastically according to equations (28) and (30),
with stochastic returns volatility given by equation (26). These equations describe in-
teresting dynamics. When trading volume is high, bets arrive quickly and Σ(t) moves
quickly towards its conditional steady state level; returns volatility remains close to
fundamental volatility; Σ(t) does not deviate far from its conditional steady state
level. When trading volume is low, bets arrive slowly and Σ(t) adjusts slowly towards
its conditional steady state level; returns volatility may remain below fundamental
volatility for extended periods of time.3

2 Solution of the Model with Invariance

The following invariance theorem states that this structural model implies, under the
assumption of constant cost of generating an informed signal, all of the invariance
hypotheses in Kyle and Obizhaeva (2016) and reveals specific connections among the
hypotheses.

Invariance Theorem. Assume the cost cI of generating a signal is an invariant
constant and let m := E{|̃i(t)|} define an additional invariant constant. Then, the

3It can be shown that (with probability one) (1) a stock’s fundamental value will eventually
become very small (since it follows a geometric Brownian motion which is also a martingale), (2)
both the bet arrival rate and returns volatility will eventually converge to zero, (3) and Σ(t) will
eventually become unboundedly large. This is consistent with the interpretation that almost all
stocks are eventually de-listed. As Keynes would say, in the long run, all companies are dead.
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invariance conjectures hold: The dollar risk transferred by a bet per unit of business
time Ĩ(t) is a random variable with an invariant distribution c̄B · ĩ(t) and the expected
cost of executing a bet C̄B(t) is an invariant constant c̄B:

4

Ĩ(t) :=
P (t) · Q̃(t) · σ(t)

γ(t)1/2
=

Q̃(t)

V (t)
·W (t)2/3 · (m · c̄B)1/3 = c̄B · ĩ(t). (34)

C̄B(t) = c̄B := cI · θ/(1− θ). (35)

The expected dollar transaction cost of executing a bet of size Q is the same function
of the dollar size of risk it transfers in units of business time I:

CB(Q) :=
1

c̄B
· I2, where I(t) ≡ P (t) ·Q(t) · σ(t)

γ(t)1/2
. (36)

The number of bets γ(t), their size Q̃(t), liquidity L(t), pricing accuracy 1/Σ(t)1/2,
and market resiliency ρ(t) are related to price P (t), share volume V (t), volatility σ(t),
and trading activity W (t) = P (t) ·V (t) ·σ(t) by the following invariance relationships:

γ(t) =

(
λ(t) · V (t)

σ(t) · P (t) ·m

)2

=

(
E{|Q̃(t)|}

V (t)

)−1

=
(σ(t) · L(t))2

m2
=

σ(t)2

θ2 · τ · Σ(t)
=

ρ(t)

θ2 · τ
=

(
W (t)

m · c̄B

)2/3

.

(37)
Here, τ is the precision of a signal, and θ is the fraction of information ĩ(t) incor-
porated by an informed trade. The price follows a martingale with stochastic returns
volatility σ(t) := θ · τ 1/2 · Σ(t)1/2 · γ(t)1/2. The arrival rate of bets γ(t) sets the pace
of business time.

These equations directly correspond to empirical hypothesis in Kyle and Obizhaeva
(2016). The bet size invariance says that the distribution of the dollar risk transferred
by a bet is the same when the dollar risk is measured in units of business time; it
directly corresponds to equation (34). The transaction costs invariance says that the
expected dollar transaction cost of executing a bet is the same function of the size of
the bet when the bets size is measured as the dollar risk it transfers in units of busi-
ness time; it directly corresponds to equation (36). Equation (35) is the unconditional
version of this statement.

Equation (37) summarizes empirical implications about bet arrival rate, bet size
as well as price impact and adds new empirical implications about pricing accuracy
and resiliency.

4In this theorem, “invariance” means that the values of the constants cI , m, and C̄B(t) as well
as the distribution of Ĩ(t) do not vary with time. In a model with different securities, they would
not vary across securities either.
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Proof of Invariance Conjectures and Relationships. Using equations (17), (20),
and (21), we derive equation (35). The value c̄B = θ · cI/(1 − θ) is constant across
stocks, since cI is constant across stocks by assumption and θ is equal by proof to
θ = 1/2 for risk-neutral informed traders (or, alternatively, constant by assumption
for more general cases).

Dividing the definition Ĩ(t) := P (t) · Q̃(t) ·σ(t) · γ(t)−1/2 by the equation C̄B(t) :=
λ(t) · E{Q̃(t)2}, plugging in the definitions of Q̃(t) and ∆B̃I(t) from equations (5)
and (9), and using definition (26), we obtain the third equality Ĩ(t) = c̄B · ĩ(t) in
equation (34); the first equality in equation (34) is the definition of Ĩ(t) and the
second equality (involving W 2/3) will follow from equation (37) below. Since ĩ(t) is
invariant by assumption and c̄B is invariant by proof, Ĩ(t) = c̄B · ĩ(t) has an invariant
distribution. Note that both Ĩ(t) and c̄B are measured in dollars while ĩ(t) represents
unit-less information.

To derive equation (36), we get λ(t) from the equation c̄B := λ(t) · E{Q̃(t)2},
plug it into CB(Q̃(t)) = λ(t) · Q̃(t)2, then plug Q̃(t) obtained from the definition
Ĩ(t) := P (t) · Q̃(t) · σ(t) · γ(t)−1/2, and finally use Ĩ(t) = c̄B · ĩ(t) from equation (34)
and E{̃i2} = 1.

To derive equation (37), we first summarize all necessary information. We write
equation (14) for daily volume, equation (19) for expected costs using equation (9),
and equation (26) for returns volatility using equations (5) and (9) as well as E{̃i2(t)} =
1 as a system of three equations:

γ(t) · E{|Q̃(t)|} = V (t), (38)

c̄B = λ(t) · E{Q̃(t)2}, (39)

γ(t) · λ(t)2 · E{Q̃(t)2} = P (t)2 · σ(t)2. (40)

These three equations reflect the economic assumptions important for deriving invari-
ance. Equation (38) says that observable trading volume results from bets. Equa-
tion (39) says that the expected price impact cost of a bet is c̄B (which is constant
from equation (35) that we have proved) assuming the bet has linear price impact
costs. Equation (40) says that the price impact of a bet generates returns volatility,
also under the assumption that price impact is linear.5

In the three equations (38), (39), and (40), one can think of γ(t), λ(t), E{Q̃(t)2},
and E{|Q̃(t)|} as unknown variables to be solved for in terms of known variables
V (t), c̄B, P (t), and σ(t). Since there are three equations and four unknowns, we need
a fourth equation. The fourth equation is the moment ratio

m =
E{|Q̃(t)|}

[E{Q̃(t)2}]1/2
. (41)

5Note that the concepts of “price impact cost” and “price impact,” which both depend on the
linear price impact parameter λ(t) in the model, actually represent somewhat different concepts,
which happen to be the same in a dealer market model in which markets are semi-strong efficient
and dealers make zero profits based on linear signal processing. In the structural model, it is a
derived result that price impact and transaction costs are linear.
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Since m := E{|̃i|}, this equation follows from the fact that Q̃(t) is a linear multiple
of ĩ(t) and ĩ(t) has a variance of one. Since ĩ(t) is assumed to have a normal distri-
bution with a variance of one, we have m = (2/π)1/2. For a different distributional
assumptions about information, m would have a different value. If we think of m as
an exogenous parameter, we now have four equations (38)-(41) in four unknowns.

Using the definition of m and the definition of trading activity W (t) = P (t) ·
V (t) · σ(t), we can solve equations (38), (39), and (40) for γ(t), E{|Q̃(t)|}, and λ(t),
as follows. Multiply the product of (38) and (39) by the square root of (40) and solve
for γ(t) to obtain

γ(t) = (m · c̄B)−2/3 ·W (t)2/3. (42)

Divide the product of (40) and the square of (39) by (38) and solve for E{|Q̃(t)|}
using (41) to obtain

E{|Q̃(t)|} = (m · c̄B)2/3 · V (t) ·W (t)−2/3. (43)

Divide the product of (40) and the square root of (39) by (38) and solve for λ(t) to
obtain

λ(t) =

(
m2

c̄B

)1/3

· 1

V (t)2
·W (t)4/3. (44)

Equation (43) and the definition of illiquidity 1/L(t) := c̄B/[P (t) · V (t)] imply that
1/L satisfies

1

L(t)
=

(
m2

c̄B

)−1/3

· σ(t) ·W (t)−1/3. (45)

Equations (26), (33), and (42) imply that pricing accuracy 1/Σ(t)1/2 and resiliency
ρ(t) satisfy

ρ(t) =
σ(t)2

Σ(t)
=

(
1

m · c̄B

)2/3

· θ2 · τ ·W (t)2/3. (46)

Equations (42) for γ(t), (43) for Q̃(t), (45) for 1/L(t), and (46) for 1/Σ(t)1/2 and ρ(t)
are summarized in equation (37). This completes the proof of the theorem.

Link to Empirical Hypotheses. Equations (42) for γ(t), (43) for Q̃(t), (45) for
1/L(t) are respectively equivalent to equations (7), (8), and (15) implied by the
market microstructure invariance hypotheses, since E{|̃i|} = m implies

E{|Ĩ|} = m · c̄B (47)

from (34). The predictions (46) for 1/Σ(t)1/2 and ρ(t) are new.
Since trading activity W (t) and its components are observable, we can empirically

infer values of γ(t), E{|Q̃(t)|}, 1/L(t), λ(t), 1/Σ(t)1/2 and ρ(t) from equation (37)
if the values of the three constants m, c̄B, and θ2τ are known. If these constants
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are not know, then they can be estimated as intercepts in regressions of logs of the
corresponding variables on logs of trading activity.

Invariance relationships come about through the following intuition: Suppose the
number of noise traders increases for some exogenous reason. In the structural model,
this happens when the share price and therefore market capitalization increases, keep-
ing the share turnover of noise traders constant. To be specific, assume that the num-
ber of noise traders increases by a factor of 4. As a result, market depth increases
and, consequently, the number of informed traders increases, since their bets now are
more profitable. The structural model shows that the number of informed traders
eventually increases by a factor of 4 as well, and each of their bets accounts for a
4 times smaller fraction of returns variance. Returns volatility per unit of business
time decreases by a factor of 2 (the square root of 4). The structural model shows
that pricing accuracy and liquidity both increase by a factor of 2, as a result of which
informed traders exactly cover the cost of private signals by submitting bets 2 times
as large as before. Overall dollar volume in the market increases by a factor of 8.
Thus, the “one-third, two-thirds” intuition comes about: One-third of the increase in
dollar volume comes from changes in bet size (81/3 = 2) and two-thirds comes from
changes in the number of bets (82/3 = 4).

3 Discussion

The model adds additional structure that imposes restrictions on the empirical invari-
ance hypotheses outlined in Kyle and Obizhaeva (2016). These additional assump-
tions impose a particular structure on the proportionality constants in invariance
relationships and thus allow us to write these disconnected relationships in a consol-
idated form of the invariance theorem (37).

The level of trading activity W (t) and its components—prices P (t), share volume
V (t), and returns volatility σ(t)—are “macroscopic” quantities whose value can be
estimated from aggregate market data, e.g., from the CRSP dataset. The bet arrival
rate γ(t), the bet size Q̃(t), the average cost of a bet 1/L(t), pricing accuracy Σ(t)1/2,
and resiliency ρ(t) are granular “microscopic” quantities whose values are difficult to
observe even with data on individual trades by individual traders. Since knowledge
of the constants c̄B, m, and τ · θ2 makes it possible to infer microscopic quantities
from macroscopic quantities using equation (37), these constants play roles in our
structural model somewhat similar to the role played by Boltzmann’s constant or
Avogadro’s number in physics.

For example, the structural model implies a particular relationship between the
invariance of bet sizes and transaction costs. Equation (34) suggests that the bet size
invariant Ĩ and transaction costs invariant c̄B satisfy the restriction E|Ĩ| = m · c̄B or,
equivalently, that the standard deviation of Ĩ is equal to c̄B. This restriction follows
from the assumption that market makers break even.

In this paper, invariance relationships for bets and transaction costs were derived
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based on the assumption that the cost of executing a bet c̄B is constant across stocks.
The structural model shows that c̄B is not the “deepest” structural parameter in the
model. The result c̄B = θ · cI/(1 − θ)—for example, if θ = 1/2 then c̄B = cI—
implies that c̄B is constant across stocks if the “deeper” structural parameters cI and
θ are constant across stocks. It is useful to think of the cost of private information
cI as proportional to the average wages of finance professionals, adjusted for their
productivity or effort required to generate one bet. The productivity-adjusted wage
of a finance professional is therefore a “deeper” parameter than the endogenous cost of
executing a bet c̄B. The invariance relationships in equation (37) result from finance
professionals allocating their skills across different markets to maximize the value of
trading on the signals they generate. The assumption that distinct bets result from
distinct pieces of private information implies a particular level of granularity for both
signals and bets.

It is interesting that invariance relationships relating the granularity of bets to
their costs depend on the first absolute moment of the distribution of signals m, but
not on the precision of signals τ .

The structural model also shows that the invariance of pricing accuracy and re-
siliency requires stronger assumptions: In addition to c̄B and m being constant, the
informativeness of a bet τ · θ2, measured as the product of signal precision τ and
the squared fraction of informed traders θ2, must be constant across time (or across
stocks) as well. Based on equation (37), the principles of pricing accuracy invariance
and resiliency invariance say that pricing accuracy is the same if its reciprocal is
scaled by returns volatility per unit of business time, and market resiliency is the
same if it is measured in units of business time.

Although the structural model is motivated by the time series properties of a
single stock as its market capitalization changes, the model applies cross-sectionally
across different securities under the assumption that the exogenously assumed cost of
a private signal cI , the shape of the distribution of signals m, and the informativeness
of bets τ · θ2 are constant across all markets.

Robustness of Assumptions. Our structural model makes restrictive assump-
tions which lead to specific properties of equilibrium. Private signals are normally
distributed. Bets are linear functions of private signals and are therefore also nor-
mally distributed. Price impact is linear in bet size. Informed traders place one bet
in a dealer market setting rather than shredding bets into many pieces and executing
them at an equilibrium speed over time. Dealers do not make profits; there are no bid-
ask spread costs; there are no “effective bid-ask spread” costs related to immediate
reversal of temporary price impact in executing bets.

The empirical results are not consistent with the “linear-normal” features of the
structural model, but are consistent with the more general empirical hypotheses con-
cerning bet size and transactions costs. Kyle and Obizhaeva (2016) find that the size
of unsigned bets closely fits a log-normal distribution, not a normal distribution. Also,
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a linear price impact model predicts transaction costs reasonably well, but a square
root model predicts transaction costs better than a linear model.We conjecture that
it should be possible to modify our structural model to accommodate non-normally
distributed bet size, non-linear price impact, and dynamic execution of bets at an
equilibrium speed proportional to the rate at which business time unfolds.

Although the structural model assumes that fundamental volatility σF , shares out-
standing N , and noise-trader turnover rate η are constants, it is also straightforward
to modify the model so that these quantities vary over time or across stocks.

Comparison with Kyle (1985). As our model, the continuous-time model of Kyle
(1985) is a dynamic model of trading between a risk-neutral monopolistic informed
trader, noise traders, and competitive risk-neutral market markers. There are, how-
ever, several modelling differences. First, the fundamental value does not change over
time and realizes once at the end of the game at time T . Second, there is only one
informed trader who gets a private signal at the beginning and trades on it gradually
throughout the game.

The strategies of informed traders are similar in both models. In Kyle (1985), the
informed trader follows a strategy dx(t) = β(t) · (ṽ−p(t)) ·dt; the intensity coefficient
β(t) is not determined from the optimization problem of the informed trader, and any
function β(t) is optimal as long as the strategy is smooth. In our model, informed
traders trade Q̃(t) = θ·λ(t)−1·E{F (t)−P (t) |∆B̄I(t)} from equation (9); the intensity
coefficient θ ·λ(t)−1 is also left undetermined in the optimization problem of informed
traders, only θ = 1/2 is obtained.

The price impact parameters λ(t) are not identified from the market efficiency
conditions (15) in both models. Instead, the market depth is pinned down by the
condition saying that all volatility results from trading. In Kyle (1985), the price
impact λ = σv/σu is obtained from the restriction Σ(T ) = 0 saying that the error
variance disappears by the end of the game, as trading of the informed trader pushes
prices towards fundamentals. In our model, the price impact λ = (P (t)σ(t))/(γ(t) ·
E{Q̃(t)2})1/2 is obtained from the similar equation (40), where (γ(t) ·E{Q̃(t)2})1/2 is
a stochastic proxi for the standard deviation of order imbalances.

Finally, the equilibrium price process is a martingale in both papers. The differ-
ence is that price volatility is a constant equal to variance of fundamentals σv in Kyle
(1985), whereas price volatility σ(t) is stochastic in our model.

4 Conclusion

The empirical invariance hypotheses of Kyle and Obizhaeva (2016) are likely to hold
more generally than under the somewhat restrictive assumptions of our structural
model. The structural model is to be interpreted as a “proof of concept,” while the
invariance hypotheses should apply more generally.

20



To derive invariance relationships, we mostly relied on the four equations (38)-(41).
These equations capture generic properties of trading. The invariance predictions
ultimately rely on several general assumptions that (1) order flow creates volume and
induces volatility and (2) ratio of moments of bet size distributions is stable across
assets and time. We therefore conjecture that invariance relationships can be obtained
in the context of other market microstructure models as well.
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